Roles of LcrG and LcrV during type III targeting of effector Yops by Yersinia enterocolitica.
نویسندگان
چکیده
Yersinia enterocolitica target effector Yop proteins into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. LcrG and LcrV have been suggested to fulfill essential functions during the type III targeting of effector Yops. It is reported here that knockout mutations of lcrG caused mutant yersiniae to prematurely secrete Yops into the extracellular medium without abolishing the type III targeting mechanism (Los phenotype [loss of type III targeting specificity]). Knockout mutations in lcrV reduced type III targeting of mutant yersiniae but did not promote secretion into the extracellular medium (Not [no type III targeting]). However, knockout mutations in both genes caused DeltalcrGV yersiniae to display a Los phenotype similar to that of strains carrying knockout mutations in lcrG alone. LcrG binding to LcrV resulted in the formation of soluble LcrGV complexes in the bacterial cytoplasm. Membrane-associated, bacterial-surface-displayed or -secreted LcrG could not be detected. Most of LcrV was located in the bacterial cytoplasm; however, small amounts were secreted into the extracellular medium. These data support a model whereby LcrG may act as a negative regulator of type III targeting in the bacterial cytoplasm, an activity that is modulated by LcrG binding to LcrV. No support could be gathered for the hypothesis whereby LcrG and LcrV may act as a bacterial surface receptor for host cells, allowing effector Yop translocation across the eukaryotic plasma membrane.
منابع مشابه
LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis.
Yersinia pestis expresses a set of plasmid-encoded virulence proteins called Yops and LcrV that are secreted and translocated into eukaryotic cells by a type III secretion system. LcrV is a multifunctional protein with antihost and positive regulatory effects on Yops secretion that forms a stable complex with a negative regulatory protein, LcrG. LcrG has been proposed to block the secretion app...
متن کاملLcrV, a substrate for Yersinia enterocolitica type III secretion, is required for toxin targeting into the cytosol of HeLa cells.
Pathogenic Yersinia species employ type III machines to transport virulence factors across the bacterial envelope. Some substrates for the type III machinery are secreted into the extracellular medium, whereas others are targeted into the cytosol of host cells. We found that during infection of tissue culture cells, yersiniae secrete small amounts of LcrV into the extracellular medium. Knockout...
متن کاملYersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response.
Yersinia pestis contains a virulence plasmid, pCD1, that encodes many virulence-associated traits, such as the Yops (Yersinia outer proteins) and the bifunctional LcrV, which has both regulatory and antihost functions. In addition to LcrV and the Yops, pCD1 encodes a type III secretion system that is responsible for Yop and LcrV secretion. The Yop-LcrV secretion mechanism is believed to regulat...
متن کاملAltered Ca(2+) regulation of Yop secretion in Yersinia enterocolitica after DNA adenine methyltransferase overproduction is mediated by Clp-dependent degradation of LcrG.
DNA methylation by the DNA adenine methyltransferase (Dam) interferes with the coordinated expression of virulence functions in an increasing number of pathogens. While analyzing the effect of Dam on the virulence of the human pathogen Yersinia enterocolitica, we observed type III secretion of Yop effector proteins under nonpermissive conditions. Dam alters the Ca(2+) regulation of Yop secretio...
متن کاملYersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops.
'Type III secretion' allows extracellular adherent bacteria to inject bacterial effector proteins into the cytosol of their animal or plant host cells. In the archetypal Yersinia system the secreted proteins are called Yops. Some of them are intracellular effectors, while YopB and YopD have been shown by genetic analyses to be dedicated to the translocation of these effectors. Here, the secreti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 183 15 شماره
صفحات -
تاریخ انتشار 2001